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A Meshfree Simulation of the Draw Bending of 
Sheet Metal  
Kalilou Sidibe, Guangyao Li 

Abstract—The simulation of the draw bending of sheet metal is done using the Reproducing Kernel Particle Method (RKPM). The particle to segment 
contact algorithm is used for the contact detection as well as the contact constraints implementations. The penalty method is used for the 
implementation of the impenetrability condition. Both two-dimensional (2D) and three-dimensional (3D) draw bending of sheet metal are successfully 
simulated. The results obtained prove the effectiveness of the RKPM and the particle to segment contact algorithm for the sheet metal forming analysis. 

Index Terms: Reproducing Kernel Particle Method (RKPM), meshfree methods, contact algorithms, draw bending, sheet metal forming 
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1 INTRODUCTION 

With the development of mechanical science and engineering 
applications, in addition to the increasing use of computer in 
mechanics, numerical methods like the finite elements 
method (FEM), and more recently the meshfree (or meshless) 
methods have been the subjects of intensive researches for 
contact problems analysis. Among the meshfree methods are:  
Smoothed Particle Hydrodynamics (SPH) [1], [2] ; Diffuse 
Element Method (DEM) [3] ; Element-Free Galerkin (EFG) [2], 
[4], [5], [6] ; Reproducing Kernel Particle Method (RKPM) [7], 
[8], [9], [10], [11]; Partition of Unity Method (PUM) [12] and so 
forth. 

The sheet metal forming is very an important process in 
manufacturing industries. The sheet metal forming requires 
the contact between tools (punch, blank holder, dies, …) and 
the blank (sheet metal).The numerical simulation of contact 
between different bodies, or different parts of a body is a 
challenging task in many engineering application. It requires 
the development of contact algorithms. Contact algorithms 
may be classified into two categories, contact searching 
algorithm and contact constraints algorithm. The contact 
searching consists of finding the contacting boundaries 
(contacting particles/nodes). The contact constraints algorithm 
is concerned with the implementation of the so-called 
impenetrability condition which does not allow overlapping 
between bodies, in other words two bodies cannot occupy the 
same space at the same time. 

In the framework of FEM, several contact searching 

algorithm have been developed. These contact searching 

algorithms include the master-slave contact algorithm [13], 

[14]; the single surface contact algorithm [13], [14], the 

hierarchy territory contact algorithm [15], and the pinball 

contact algorithm [16], [17]. In the framework of meshless 

method, the particle to particle contact algorithm [18], [19], 

and the meshfree contact-detection algorithm [11], [20] were 

developed.  

Designed to simulate high velocity impact of particles, the 
particle to particle contact algorithm represents the 
boundaries coarsely by particles (circular) therefore can not 
evaluate correctly the interpenetration of contact bodies. The 
meshfree contact-detection algorithm detects the overlapping 
between contacting bodies based on the determinant of the 
moment matrix, but does not allow direct evaluation of the 
amount of the interpenetration of the contact bodies. The 
accurate evaluation of the interpenetration is closely linked to 
the correct representation of the boundaries. These algorithms 
need an additional effort to represent correctly the boundaries 
in order to evaluate the gap between contacting bodies. 
Therefore, instead of using these algorithms, a ‘particle to 
segment contact algorithm’ was developed and validated by G. 
Li et al. [21] for three-dimensional (3D) problems and K. 
Sidibe et al. [22] for two-dimensional (2D) problems. In the 
particle to segment contact algorithm the boundaries of the 
bodies are represented by particles located on the boundary, 
and these particles are interconnected to form polygons fitting 
the boundary without overlapping. The algorithm is 
originally developed for the simulation of the contact between 
a flexible body and several rigid bodies as encountered in 
metal forming where the workpiece is deformable and the 
tools are usually assumed to be rigid. This algorithm has the 
advantage to allow the correct evaluation of the 
interpenetration used for the determination of the contact 
constraints. K. Sibibe et al. [23] updated it to the simulation of 
flexible bodies contact as well as the self contact 

2 RKPM DISCRETIZATION 

The reproducing kernel particle method (RKPM) is 

systematically formulated in [7], [8], [9], [10], [11]. The RKPM 

uses the finite integral representation of a function u(x) in a 

domain Ωx. 
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where )(xau  is the approximation of function u(x), 

)( yx aΦ is the kernel function with compact support a. 
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Discretizing the domain Ωx by a set of particles

 NP21  ., . . , , xxx , where xI is the position vector of particle I, 

and NP is the total number of particles; the integral is 

approximated by the following summation: 
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where )(xN I
 is the RKPM shape function defined to be  

IIaII Φ ΔVxxxxxCxN )();()(   (3) 

);( IxxxC   is the correction function introduced to 

improve the accuracy of the approximation near the 

boundaries and IΔV  is the volume of particle I and the 

subscript h is associated with a discretized domain. 

The application of the principle of virtual work and the 

particles approximation to the equation of the conservation of 

the linear momentum leads to the equation of motion for 

contact problems (G. Li et al. [13]):  

JIJ
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Where: 

- 
ext

If  : the external force of particle I 

- 
int

If  : the internal force of particle I 

- Jd  : the generalized acceleration of particle J 

- 
cont

If : the contact force of particle I (see part III) 

- 




0

0M dNN JIIJ   is the consistent mass matrix which 

can be approximated by row sum technique. 

3 PARTICLE TO SEGMENT CONTACT ALGORITHM 

In this work, the particle to segment contact algorithm is 

used for the contact simulation. The particle to segment 

contact algorithm was developed by G. Li et al [21] for 3D 

problems and by K. Sidibe et al. [22] for 2D problems. 

Designated for the simulation of the metal forming analysis, 

the particle to segment contact algorithm modelled the tools 

as rigid bodies and the workpiece as flexible (deformable) 

body. 

In 2D the boundaries of the rigid tools are discrtized by 

piecewise linear segments while in 3D the boundaries of tools 

assumed to be rigid are modelled by flat segments. 

Every time step, prior to the calling to the contact-

subroutine, the trial accelerations, velocities and 

displacements are computed from the explicit time routine. 

The trial positions of the particles, obtained from the trial 

displacements, are then used to check whether there is 

overlapping between the bodies. Whenever any overlapping 

is found the contact forces are evaluated and applied to cancel 

the interpenetration of the bodies as shown in Figure 1.  

In Figure 1: )(tSx  is the position of S at time t  (before 

penetration), )(~ ttS x trial position of S at time tt   

and )( ttS x  corrected position of S at time tt  (after 

application of contact forces); n is the normal unit vector of 

the contact segment pointing out from the segment toward 

the flexible body,   1e and   2e   are the tangential unit vectors 

on the edges of the segment and Ng is the normal gap. 

 

Fig. 1. Correction of trial position of the penetrating 

slave particle S 

As shown in Figure 1, the normal gap is given by: 

nxxng  )~~( 1SNg   (5) 

For each penetrating slave particle, the penalty force 

necessary to cancel the penetration is evaluated by: 

nnf .
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The coulomb friction model is adopted to evaluate the 

friction between the contacting bodies. Frictional force 

applied to oppose the relative tangential displacement at the 

contact interface is given by: 
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Where  is the friction coefficient on the contact 

interface and rv  is the tangential component of the relative 

velocity of the slave particle S with respect to the contact 

segment. 

The resultant of the contact forces, on a given slave 

particle J is calculated by  

)()( JJ TNJ fff     (8) 

The force vectors calculated above are the exact nodal 

force vectors for each penetrating particle, to satisfy the 

impenetrability and friction conditions at the interface. 

Therefore the exact nodal force is re-distributed to a non-local 

‘fictitious force’. The fictitious force vector for a particle I  is 

calculated as follows.  


J

JIJ

cont

I N )(Xff    (9) 

4 NUMERICAL APPLICATIONS 

Our current RKPM computer codes were tested and 

validated through standard test by G. Li et al. [21] for 3D 

formulation and K. Sidibe et al. [24] for the 2D formulation. 

Also the 3D implementation of the particle to segment contact 

algorithm was validated by G. Li et al. [21] and the 2D 

implemented by K. Sidibe et al. [22] for bulk metal forming. 

This work deals with the extension of these codes to the sheet 

metal forming simulation, the basic formulation staying the 

same. Here the standard problem of draw bending is treated 

for both 2D and 3D problems.  

The geometry of the problem is described in Figure 2. In 

the simulation, the tools are assumed to be rigid. The punch is 

moved downward with the prescribed velocity of 10 m/s. The 

maximum stroke of the punch at the end of the simulation is 

70 mm. The blank holder and the die are fixed. The gap 

between the die and the blank holder is equal to the thickness 

of the blank (0.81mm). The motion of the pad is synchronized 

with that of the punch. A blank of 350×35×0.81mm3 with an 

elastoplastic material with isotropic linear strain hardening 

model is used. 

 

Fig. 2. Geometry description of the draw bending problem  

4.1 Two-dimensional draw bending 

A plane strain formulation is used in 2D. The blank of 

350×0.81 mm2 (in 2D) was discretized by 1755 (351×5) 

particles. The deformed shapes of the blank corresponding to 

two stages of the simulation of the sheet forming process in 

2D are shown in Figure 3. 

 
(a) Punch stroke of 35mm 

 
(b) Punch stroke of 70mm 

Fig. 3. Deformed shape of the blank in 2D 
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4.2 Three-dimensional draw bending 

A full 3D formulation is used for the simulation of the 

sheet forming process. The blank is discretized by a set of 

3525 (141×5×5) particles. Two stages of the deformation of 

the blank are shown in Figure 4.  

 
(a) Punch stroke of 35 mm     (b) Punch stroke of 70 mm 

Fig. 4. Deformed shape of the blank in 3D

5 CONCLUSION 

The particle to segment contact algorithm, correctly 

implemented in the Reproducing kernel Particle Method, 

has been successfully used for the simulation of the draw 

bending of sheet metal. Both 2D and 3D problems are 

treated. A full 3D RKPM formulation has been used which 

has advantages than using shell theories as in the FEM in 

term of accuracy. 

ACKNOWLEDGEMENT 

This work was partially supported by TWAS under 

Research Grant N° 09-143 RG and ENI-ABT under Research 

Grant N°001/ENI-ABT/2010. 

REFERENCES 

[1] R.A Gingold, J.J. Monaghan. “Smoothed particle 

hydrodynamics theory and application to non-

spherical stars”, Monthly Notices of the Royal 

Astronomical Society, Vol. 181, pp. 375-389, 1977. 

[2] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. 

Krysl. Meshless Methods: “An Overview and Recent 

Developments”.  Comput  Methods Appl.Mech. Engrg, 

special issue on Meshless Methods, Vol. 139, pp. 3-47, 

1996.  

[3] B. Nayroles, G. Touzot, P. Villon. "Generalizing the finite 

element method: diffuse approximation and diffuse 

elements”. Computational Mechanics, Vol. 10, pp. 307-

318, 1992. 

[4] T. Belytschko,  Y.Y. Lu,  L. Gu. “Element Free Galerkin 

Method”, Int. J. Numer. Meth. Engn., Vol. 37, pp. 229-

256, 1994. 

[5] J. Dolbow, T. Belytschko. “An Introduction to 

Programming the Meshless Element Free Galerkin 

Method”, Archives in Computational Mechanics, Vol. 5 

(3), pp. 207-241, 1998. 

[6] X.L. Chen, G.R. Liu,  S.P. Lim. “An element free 

Galerkin method for the free vibration analysis of 

composite laminates of complicated shape”. COMPOS 

STRUCT, Vol. 59 (2), pp. 279-289, 2003. 

[7] W. K. Liu, S. Jun, Y. F. Zhang. "Reproducing Kernel 

Particle Methods”,  Int j. Numer. Meth. Fluids, Vol. 20, 

pp. 1081-1106, 1995.  

[8] W.K. Liu, S. Jun, S. Li, J. Adee, T. Belytschko. 

“Reproducing Kernel Particle Methods for structural 

dynamics”, Int. J. Numer. Meth. Engng., Vol. 38, pp. 

1655-1679, 1995. 

[9] J.S. Chen, C. Pan, C.T. Wu. “Large deformation analysis 

of rubber based on a reproducing kernel particle 

method”, Computational Mechanics, Vol. 19, pp. 211–

227, 1997.  

[10] J.S. Chen, C. Pan, C.T. Wu, W. K. Liu. “Reproducing 

kernel particle methods for large deformation 

analysis of non-linear structures”, Comput Methods 

Appl.Mech. Engrg., Vol. 139, pp. 195-227, 1996.  

[11] S. Li, W. Hao, W. K. Liu. “Numerical simulations of 

large deformation of thin shell structures using 

meshfree methods”, Computational Mechanics, Vol. 25, 

pp. 102-116, 2000.  

[12] J.M. Melenk, I. Babuska. “The partition of unity finite 

element method: Basic theory and application”, 

Comput. Methods Appl. Mech. Engrg, Vol. 139, pp. 

289-314, 1996. 

[13] J.O. Hallquist, G.L. Goudreau, D.J. Benson. “Sliding 

interfaces with contact-impact in large-scale lagrangian 

X Y

Z

X Y

Z



International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012                                                     5 
ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

computation”, Comput. Methods Appl. Mech. Engrg., 

Vol. 51, pp. 107-137, 1985.  

[14] J.O. Hallquist, “LS-DYNA3D Theoretical Manual”, 

Livermore Software Technology Corporation, 

Livermore, 1998. 

[15] Z.H. Zhong. “Finite Element Procedures for Contact-

Impact”, Oxford University Press, 1993. 

[16] T. Belytschko, M.O. Neal. “Contact-Impact by the 

Pinball Algorithm with Penalty and Lagrangian  

Methods”, Int. J. Numer. Meth. Engng.,  Vol. 31, pp. 

547-572, 1991.  

[17] T. Belytschko, I.S. Yeh. “The splitting pinball method 

for contact-impact problems”, Comput. Methods Appl. 

Mech. Engrg., Vol. 105, 375-393, 1993.  

[18] R. Vignjevic, J. Campbell. “A penalty approach for 

contact in smoothed particle hydrodynamics”, 

International Journal of Impact Engineering, Vol. 23, 

pp. 945-956, 1999. 

[19] J. Cambell, R. Vignjevic, L. Libersky. “A contact 

algorithm for smoothed particle hydrodynamics”, 

Comput Methods Appl.Mech. Engrg, Vol. 184, pp. 49-

65, 2000.  

[20] S. Li, D. Qian, W. K. Liu, T. Belytschko. "A Meshfree 

Contact-detection Algorithm”, Comput. Methods Appl. 

Mech. Engrg., Vol. 190, pp. 3271-3292, 2000.  

[21] G. Li, K. Sidibe, G.R. Liu. “Meshfree method for 3D 

bulk forming analysis with lower order integration 

scheme”, Engineering Analysis with Boundary 

Elements, Vol. 28, pp. 1283-1292, 2004.  

 [22] K. Sidibe, G. Li, A. Ouane, H. Bokar.  “Numerical 

simulation of mechanical contact problems using the 

RKPM with lower integration scheme”, Rev. Ivoir. Sci. 

technol., Vol 14, PP 147-158, 2009 

[23] K. Sidibe, G. Li. “Numerical simulation of the 

mechanical contact between flexible bodies by using a 

reversible particle to segment contact algorithm in 

meshfree methods”, Journal des Sciences Pour 

l’Ingénieur, Vol 13, PP 79-87, 2011. 

[24] K. Sidibe, T. Sanogo, A. Ouane, G. Li. “Lower 

Integration Rule and Benchmark Test Procedure for 2D 

Meshfree Methods”, Journal Africain de 

Communication Scientifique, Vol. 7, pp. 799-805, 2009.

 


